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Abstract. Increased interest in one-dimensional surface superlattices has motivated us to study
the electron–electron scattering rate in these structures. Using a single-miniband model, we show
a rich dependence of the scattering rate on the position of the Fermi level. This is particularly
interesting from an experimental point of view, since the Fermi level can be externally controlled.
When the Fermi level lies below the top of the miniband, the scattering rate is∝12 ln(εF /1)
(1 is the temperature, or the electron’s excess energy above the Fermi level, whichever is larger).
This behaviour is similar to that of a uniform two-dimensional electron system. Near the top
of the miniband, the Van Hove singularity in the energy spectrum strongly affects the scattering
rate, which is∝1. Above the top of the miniband, the non-trivial shape of the Fermi surface
leads to a rich dependence of the scattering rate on the wave vector of the scattered electron. This
causes the scattering rate averaged over states near the Fermi surface to be∝12 ln2(εF /1). The
method described here for calculating the scattering rate can be applied to any two-dimensional
electron system with an arbitrary energy spectrum.

1. Introduction

In recent years there has been increased interest [1–6] in one-dimensional surface
superlattices (1DSSLs), which are two-dimensional electron systems (2DESs) subjected
to a one-dimensional periodic potential. Such systems are often realized by growing a
periodic array of metallic wires on top of a quantum well heterostructure. By applying a
voltage to these wires, one may induce a 1D periodic potential in the underlying 2DES,
whose magnitude and form depend on the applied voltage. Using advanced fabrication
techniques, it is possible to prepare samples with extremely high mobility (of the order
of 107 cm2 V−1 s−1 [7]), thus ensuring that effects due to the periodic potential can be
observed experimentally. Adding to this the ability to independently control the electron
concentration of the 2DES, and thus the Fermi energy, one can see that these systems are
well suited for the study of various transport effects. Some examples are Wannier–Stark
localization and Bloch oscillations [8], as well as novel magnetoresistance effects [4–6].

In this work we present a qualitative analysis of the electron–electron (e–e) scattering
rate, τ−1

e−e, in a 1DSSL. Besides being a key theoretical concept in interacting electron
systems, in a 2DES the scattering rate also plays an important practical role in a number of
physical processes, such as tunnelling [11], and dephasing of localized electrons [12, 13].
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Furthermore, in a recent experiment Messicaet al [1] reported a suppression of
conductance by temperature and electric field in a 1DSSL. This effect was attributed to
e–e scattering and is due to the non-trivial single-electron energy spectrum of the system.
It is not observed in systems where the energy spectrum is quadratic (such as an n-type
uniform GaAs/GaAlAs quantum well). One may define a measure of the contribution of
e–e scattering to the resistivity in the form

α ≡ ne2

m

ρe−e

τ−1
e−e

(1)

wheren is the electron concentration andτ−1
e−e is the averaged scattering rate of all electrons

within kBT of the Fermi surface.α (.1) describes the effectiveness of converting e–e
scattering into resistivity. For a quadratic spectrum,α ≡ 0, whereasα ∼ 1 for systems
where the electron spectrum is markedly non-quadratic. This was nicely illustrated in the
above-mentioned experiment, whereα was observed to increase with the strength of the
applied periodic potential. In the light of this, the results presented in this work regarding
the e–e scattering rate are expected to be relevant to the conductance of a 1DSSL, even
though this will not be discussed explicitly.

Another experiment in which one may expect to observe effects due to e–e scattering
is one investigating the tunnelling between two quantum wells. In such an experiment one
measures theI–V curve of the tunnelling current, which exhibits a resonance peak due to
in-plane momentum conservation. Under certain conditions, e–e scattering is the dominant
broadening mechanism for the resonance, thus providing a way to measure the e–e scattering
rate. This method has already been used to measure the e–e scattering rate in a uniform
2DES [11]. Recently, a similar experiment involving tunnelling between a 2DES and a
1DSSL has been performed by Kardynalet al [3]. In this experiment the presence of many
resonance peaks in theI–V curve was used to infer the existence of a miniband structure in
the 1DSSL spectrum, as well as to model the form of the 1D periodic potential. While e–e
scattering was not referred to in the above work, it may be possible in a future experiment
to use the width of the resonances to measure various e–e scattering rates in a 1DSSL.

The main feature of a 1DSSL is the miniband structure of the energy spectrum. In this
work we use a tight-binding model for the energy spectrum, and consider only a single
occupied miniband. The scattering rate is studied using the Fermi golden rule together
with an interaction potential whose exact form we do not specify. We show that these
simplifications are justified if one is considering the analytic behaviour of the scattering
rate, rather then exact numerical results. Despite the simplicity of the model, the behaviour
of the e–e scattering rate has a rich dependence on the position of the Fermi level, which
can be externally controlled in an experiment.

There are three energy scales relevant to the problem:εF , the Fermi energy;3, the
miniband width; and1, which characterizes the excess energy of the test electron, or the
temperature, whichever is larger. We show that if the Fermi level is below the top of the
miniband, then the functional dependence of the e–e scattering rate on1 is the same as that
in a 2DES. However, when the Fermi level reaches the top of the miniband, the scattering
rate is strongly enhanced due to the Van Hove singularity in the energy spectrum. Above
the top of the miniband, the behaviour of the scattering rate depends strongly on the wave
vector of the test electron. In general, this behaviour is similar to that when the Fermi
level is below the top of the miniband, except near points on the Fermi surface with zero
curvature, where the scattering rate is much larger. However, the zero-curvature points also
have an effect on theaveragedscattering rate, and cause it to be larger then when the Fermi
level is below the top of the miniband.
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One of the most interesting features of our model is the presence of a saddle point at
the top of the miniband, which leads to the so-called Van Hove singularity in the density of
states. The effect of a saddle point on the e–e scattering rate has been extensively studied
within the context of high-Tc superconductivity [14–16]. However, it seems extremely
difficult to experimentally separate out the effects of the saddle point from the other
rich features present in high-Tc materials, such as nesting, and strong electron–electron
correlations. On the other hand, in our model there is only one saddle point on the
Fermi surface, no nesting, and no strong electron–electron correlations. This opens up
the possibility of utilizing a 1DSSL to experimentally study the effect of a saddle point on
the e–e scattering rate.

The rest of the paper is organized as follows. In section 2 we present the theoretical
model used to calculate the e–e scattering rate. In section 3 we present a detailed analysis
of the scattering rate, which enables us to identify the main qualitative features, as well as
to obtain many exact results. In section 4 we concentrate on the effect of the Van Hove
singularity on the e–e scattering rate, and in section 5 we discuss our results and summarize.

2. The theoretical model

In order to characterize the 1DSSL, we use the tight-binding approximation for the energy
spectrum due to the 1D periodic potential [9]. Taking thex-direction to be the direction of
the potential modulation, we write

εk = 23− 23 coskxa +
h̄2k2

y

2m
(2)

where a is the period of the modulation,3 is the overlap integral of the tight-binding
Hamiltonian, andm is the effective mass. Also, we have added the constant 23 to the
energy spectrum so that the bottom of the miniband corresponds to zero energy.

For energies below the top of the miniband, the iso-energy lines are closed, whereas
above the top of the miniband, they are open. Exactly at the top of the miniband, the
energy spectrum has a saddle point atk = (π/a, 0), which leads to the logarithmic Van
Hove singularity in the density of states.

To calculate the e–e scattering rate we utilize the Fermi golden rule which we write as

1

τe(k)
= 1

4π3h̄

∫
dε1 dε2 f (ε1+ ε2− εk)(1− f (ε1))(1− f (ε2))I (k, ε1, ε2) (3)

where

I (k, ε1, ε2) =
∫

dk1 dk2 |U(k − k1)|2δ(ε1− εk1)δ(ε2− εk2)

× δ(εk1 + εk2 − εk − εk1+k2−k). (4)

U(q) is the matrix element of the interaction potential,

f (k) = f (εk) = [e(εk−εF )/kBT + 1]−1

is the Fermi distribution function, and we have summed over the spin degrees of freedom.
The quantity measured in many experiments, such as the tunnelling experiment described
above and various interference experiments [17], is the energy relaxation rate, sometimes
called the dephasing rate or the spectral broadening. It can be shown [18] that this quantity
is directly related to the scattering rate calculated with the aid of the Fermi golden rule.
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The calculations carried out in this work will be limited to the case where the scattered
electron is near the Fermi surface and the temperature is much smaller than the Fermi
energy. Defining the parameter

1 ≡ max(|εk − εF |, kBT )
one may write this condition as1� εF . Besides being relevant to most experiments, this
is also the only case where one can examine the analytical behaviour of the Fermi golden
rule.

Under the condition1 � εF , it is possible to neglect dynamical screening effects and
take the interaction potential between the electrons to be the statically screened Coulomb
potential. In a uniform 2DES the matrix element for this potential is

U(q) = 2πe2(κ(|q| + qs))
where κ is the background dielectric constant andqs = 2me2/(κh̄2). Assuming a
GaAs/GaAlAs quantum well with a 2D electron concentration of∼1011 cm−2, it is easy
to show that the Thomas–Fermi wave vector,qs , is of the order ofkF , the Fermi wave
vector. This means that the dependence of the matrix element on the transferred wave
vectorq, is smooth on the scale ofkF . Under the condition1� εF , the transferred wave
vector is less than, or of the order of,kF , so U(q) is smooth over the whole region of
integration in the Fermi golden rule. In a 1DSSL the situation is more complicated, and to
our knowledge a comprehensive description of the screening has yet to be given. Even with
the single-miniband model that we use here, the analysis is quite complicated, and only
approximate results have been derived for a few specific limits [10]. However, it seems
reasonable to assume that the screened potential still has a smoothq-dependence, and hence
that the analytic behaviour of the scattering rate is unaffected by the exact form ofU(q)
and is determined solely by phase-space considerations. Furthermore, we will show that
only specific scattering processes, corresponding to specific values of the transferred wave
vector, contribute to the leading-order term of the scattering rate. This enables us to give
the scattering rate in terms of specific values ofU(q) without knowing the full functional
form (a similar situation arises for the uniform 2DES [20]).

3. A detailed analysis of the scattering rate

We begin our analysis of the scattering rate by noting that in the limit1� εF , the presence
of the Fermi functions limits the region of the energy integrations in equation (3) to within
1 of the Fermi energy. This means that the energiesε1 andε2 appearing inI (k, ε1, ε2) are
close toεF . We will show that for a 2D systemI (k, ε1, ε2) always diverges in the limit
1→ 0, with the divergence being mostly logarithmic, but sometimes of higher order. The
logarithmic divergence has long been known of for the special case of a uniform 2DES
[21, 22], whereas certain aspects of the general 2D system have been studied by Fukuyama
and Ogata [23]. The divergence ofI (k, ε1, ε2) as1→ 0 means that the main contribution
to it comes from specific regions of the 4Dk1–k2 space. This in turn means that the
dominant contribution to the scattering rate comes from specific scattering process, and not
all scattering processes allowed by momentum and energy conservation laws.

In appendix A we show that for a scattering process to be dominant,k1 andk2 must
be close to the vectorsk0

1 andk0
2 respectively, such that one of the following conditions is

satisfied:

vk0
1
= 0 or vk0

2
= 0 or vk0

1+k0
2−k = 0 (5a)

vk0
1
‖ vk0

2
‖ vk0

1+k0
2−k (5b)
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(b)

k

(a)
k

Figure 1. Points on the Fermi surface which have velocity parallel to that of a given wave
vectork. (a) For a closed and convex Fermi surface there is only one such point (at−k). (b)
For an open Fermi surface, like that occurring when the Fermi level is above the top of the
miniband, there are three such points (except whenk is at a zero-curvature point, where the
four points displayed merge into two).

wherevq is the velocity corresponding to wave vectorq. An additional implicit condition is
of course thatk0

1 andk0
2 describe a legitimate scattering process, i.e. that all of the vectors

k0
1, k0

2, andk0
1 + k0

2 − k are within energy distance1 of the Fermi surface.
Condition (5a) means that the corresponding wave vector,k0

1, k0
2, or k0

1 + k0
2 − k, is

at a saddle point, and this can only occur if the Fermi surface is within the energy distance
1 of such a point. On the other hand, condition (5b), which means that the energy surface
is parallel at the three pointsk0

1, k0
2, andk0

1 + k0
2 − k, is much more general and can be

satisfied for any Fermi surface. In fact, due to the time-reversal symmetry,εk = ε−k, it
is easy to see that there are three different scattering processes which always satisfy this
condition. These are

k0
1 = k0

2 = k (6a)

k0
1 = −k0

2 = k (6b)

−k0
1 = k0

2 = k. (6c)

For a non-nested and convex Fermi surface, these are the only possible processes that satisfy
condition (5b) (see figure 1(a)), whereas we shall see that for a more complex Fermi surface,
other processes may also be possible.

Up till now, all that has been said refers to a general 2DES, the only limitation being
that1 � εF . We shall now apply the above results to the model under discussion, and
identify the dominant scattering processes. Following this we will calculate the contribution
of these processes to the scattering rate.

As was discussed in the introduction, we distinguish between three different regimes of
our model.
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(i) First regime. When the Fermi level is below the top of the miniband,εF < 43
and |εF − 43| � 1, then the Fermi surface is closed and convex. This means that the
only dominant scattering processes are those described by equations (6). The contribution
of these scattering processes is calculated with the aid of appendix B. For the contribution
of the scattering process corresponding to equation (6a) we obtain

I a(k, ε1, ε2) = m|U(0)|2
h̄2a23|α(k)|

[
ln
π |α(k)|
|ε1− εk| + ln

π |α(k)|
|ε2− εk|

]
(7)

whereα(k) is proportional to the curvature of the energy surface atk and is given by

α(k) = 23 sin2(kxa)+
h̄2k2

y

m
cos(kxa). (8)

The above result is valid as long asα(k) is not small (the lower limit is set by equation (B9)),
which in effect means that the curvature of the Fermi surface near the pointk is non-zero.
This is always true for the first regime, since the Fermi surface is closed and convex. In
fact, it can be seen from the definition ofα(k) that it is generally of the order ofεF .

The contributions of scattering processes (6b) and (6c) to I (k, ε1, ε2) can be calculated
using exactly the same method as is presented in appendix B. The results are also identical
except for the process corresponding to equation (6c), where the matrix elementU(0) is
replaced byU(2k). Since the total value ofI (k, ε1, ε2) is just the sum of the contributions
from the three dominant scattering processes, we see that

I (k, ε1, ε2) = 2I a(k, ε1, ε2)+ (U2(2k)/U2(0))I a(k, ε1, ε2).

Inserting this into equation (3), and using the working assumption that1 � εF and
α(k) ∼ εF , it is clear that the scattering rate is of the order of12 ln(εF /1). Thus
we see that for the first regime the scattering rate has the same functional form as that
of the uniform 2DES. The integral can be calculated exactly for the two limiting cases
εF � |εk − εF | � kBT andεF � kBT � |εk − εF |, where we obtain

1

τe(k)
=



m(2|U(0)|2+ |U(2k)|2)
8πh̄3a23|α(k)| (kBT )

2

× ln

[
εF

kBT

]
for εF � kBT � |εk − εF |

m(2|U(0)|2+ 2|U(2k)|2)
4π3h̄3a23|α(k)| |εk − εF |2

× ln

[
εF

|εk − εF |
]

for εF � |εk − εF | � kBT .

(9)

(ii) Second regime.If the Fermi surface is near the top of the miniband,|εF −43| . 1,
then the saddle point in the energy spectrum comes into play and has a strong effect on the
scattering rate. This can be seen formally from the fact that condition (5a) can be satisfied
when the Fermi level is near the top of the miniband, whereas in the general case it cannot.
The details of the scattering rate for this regime will be handled separately in section 4.

(iii) Third regime. When the Fermi level is above the top of the miniband,εF > 43
and|εF − 43| � 1, the Fermi surface is open and concave. The main consequence of this
is that there are points on the Fermi surface which have zero curvature, and for electrons
near these points the scattering rate is markedly different to that for the rest of the Fermi
surface.

For electrons not in the vicinity of one of the zero-curvature points (the exact criteria
are defined in equation (B9)), the contribution of the three processes of equations (6) to the
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scattering rate can be dealt with in the same manner as for the first regime. This means
that equation (7) describes the contribution of process (6a) to I (k, ε1, ε2) and equation (9)
describes the total contribution of the three processes to the scattering rate. However,
contrary to the case for the first regime, there are other processes that contribute to the
scattering rate, besides the above-mentioned three. The reason for this is that for a given
wave vector,k, there are three different points on the Fermi surface whose velocity is
parallel tovk (figure 1(b)), as opposed to one when the Fermi surface is closed and convex
(figure 1(a)). These extra points on the Fermi surface mean that there are eight more
dominant scattering processes besides the three original ones. Due to the non-trivial nature
of the energy spectrum, these extra processes are more onerous to analyse, and their exact
contribution to the scattering rate will not be given here. Instead, at the end of appendix B
we show that they make a similar contribution to the scattering rate to the original three.
Thus we must keep in mind that the actual scattering rate for this regime is two to three
times larger than that given by equation (9), which includes just the three original processes.

For electrons near the zero-curvature points, the contribution of process (6a) to
I (k, ε1, ε2) is calculated in appendix B, and is given by

I a(k, ε1, ε2) = m3/2|U(0)|2
4h̄3a233/2|ky sinkxa|

×
[

2

|εk − ε1|2+ |εk − ε2|2
]1/4

η

[
2εk − ε1− ε2√

2|εk − ε1|2+ 2|εk − ε2|2
]

(10)

where

η(x) = 4√
1+ x F

[
arccos(−x)

2
,

2

1+ x
]

and

F(φ, a) ≡
∫ φ

0
(1− a sin2 θ)−1/2 dθ

is the elliptic integral of the first kind. Note that the limitky → 0 does not present a
problem as regards the above result, as this limit means that k is near the saddle point, and
is treated separately in section 4. Similarly, the limit sin(kxa)→ 0 is also irrelevant since
it is easy to see that ifα(k) is small, and we are not near the saddle point, then sin(kxa)

cannot be small.
As before, the contributions of the other scattering processes (equations (6b) and (6c))

are identical except for the different matrix element, so

I (k, ε1, ε2) = 2I a(k, ε1, ε2)+ (U2(2k)/U2(0))I a(k, ε1, ε2).

Inserting this into the expression for the scattering rate, it is easy to see that the final result
is proportional to13/2, as compared to12 ln(εF /1) when the curvature is non-zero. For
the two limiting casesεF � |εk − εF | � kBT and εF � kBT � |εk − εF |, we can scale
the integral and perform the resulting dimensionless integral numerically, thus obtaining

1

τe(k)
=


4.86m3/2(2|U(0)|2+ |U(2k)|2)

16πh̄4a233/2|ky sinkxa|
(kBT )

3/2 for εF � kBT � |εk − εF |

6.61m3/2(2|U(0)|2+ |U(2k)|2)
16πh̄4a233/2|ky sinkxa|

|εk − εF |3/2 for εF � |εk − εF | � kBT .

(11)
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Note that even though the above result only accounts for the three scattering processes of
equations (6), it is exact for the case in whichk is near a zero-curvature point. The reason
for this is that in this case there is only one other point on the Fermi surface whose velocity
is parallel tovk, as opposed to three points in the non-zero-curvature case (figure 1(b)).

4. Near the Van Hove singularity

In this section we deal with the case where the Fermi energy is near the saddle point in the
energy spectrum. Since the saddle point is at the top of the miniband, this means that

|εF − 43| . 1. (12)

In order to derive an analytic expression for the scattering rate, it is necessary to assume
a stronger inequality, specifically|εF − 43| � 1. We shall only refer to the general case
at the end of this section, whereas until then we will indeed assume the stronger inequality
(which in effect means that the Fermi level is exactly at the saddle point).

As we noted in the introduction, the general case of a saddle point in the energy spectrum
has been studied within the context of high-Tc superconductivity [14–16]. It has been shown
that the behaviour of the scattering rateτ−1

e (k) depends strongly onk, the wave vector of
the scattered electron. Fork near the saddle point, the scattering rate is proportional to1,
whereas fork far away from the saddle point, the scattering rate is proportional to13/2.
Since the main contribution to the logarithmically large density of states comes from values
of k near the saddle point, we will focus on this case in the present work. For the case in
which k is far away from the saddle point, the reader is referred to Gopalanet al [14].

Due to the special nature of the energy spectrum at the saddle point, the general analysis
of the scattering rate carried out in the previous section cannot be applied here. Specifically,
instead of trying to calculate the functionI (k, ε1, ε2), and the performing the energy integral
in equation (3), we first perform the trivial energy integrals so that we are left with the
momentum integrals. As we shall soon see, the main contribution to these integrals comes
from the region wherek1 andk2 are near the saddle point, and sincek is also near the
saddle point, this means thatk1 + k2 − k is near the saddle point as well. The fact that
the main contribution to the scattering rate comes from scattering processes where all four
electrons are near the saddle point enables us to expand all of the energies in equation (3)
around this point. The expansion ofεk around the wave vector(π/a, 0) leads to the result

εk = 43−3xy (13)

where

x = (kxa − π)+ h̄ky/
√

2m3 and y = (kxa − π)− h̄ky/
√

2m3.

Using the same expansion for all of the energies in equation (3), and rescaling the integral
accordingly, one obtains

1

τe(k)
= m3|U(0)|2

2π3h̄3a2

∫ ∞
−∞

dx1 dy1 dx2 dy2 f (43−3(x1y1+ x2y2− xy))
× (1− f (43−3x1y1))(1− f (43−3x2y2))

× δ(3(xy1+ yx1+ xy2+ yx2− x1y2− x2y1− 2xy)) (14)

where the limits of integration have been taken to infinity in view of the assumption that
the main contribution to the integral comes from smallxi andyi .

The integral in equation (14) can be solved for the two limiting cases

εF � |εk − εF | � kBT and εF � kBT � |εk − εF |.
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The first case has been dealt with by Gopalanet al [14], whereas the second case, to our
knowledge, has yet to be dealt with. For the first case we obtain

1

τe(k)
= 4m|U(0)|2|εk − εF |

π3h̄3a23
(15)

where it is easily seen that the main contribution to the integral in equation (14) comes
from the region wherexi ≈ x andyi ≈ y (i = 1, 2). This in turn means that our original
assumption (that the main contribution to the scattering rate comes from scattering processes
where all four electrons are near the saddle point), is indeed correct.

As for the second case, one may make the transformationsxi → xi and3xiyi → εi
(i = 1, 2), so that equation (14) becomes

1

τe(k)
= m|U(0)|2

2π3h̄3a23

∫ ∞
−∞

dε1 dε2 f (43− ε1− ε2)(1− f (43− ε1))(1− f (43− ε2))

×
∫ ∞
−∞

dx1 dx2 δ(3y(x
2
1x2+ x2

2x1)+ x(ε2x1+ ε1x2)− ε2x
2
1 − ε1x

2
2). (16)

In the above integral we have neglected the term proportional to3xy = εk − εF , since
according to our present assumption, it is small compared toε1 andε2 (which are∼kBT ).
By the same reasoning we can assume thatx � xi and y � εi/xi , and hence that the
dominant terms in theδ-function are the two quadratic terms. This means that only the
regions whereε1ε2 < 0 contribute to the integral, and also that

|x2| ≈
√
|ε2/ε1||x1|.

Therefore, if we define

g±(x1) ≡ 3y(x3
1|ε2/ε1| ± |x3

1|
√
|ε2/ε1|)+ xε2(x1∓

√
|ε1/ε2||x1|)

(where the± sign corresponds tox2 ≈ ±
√
|ε2/ε1||x1|), we may write

1

τe(k)
= m|U(0)|2
π3h̄3a23

∫ ∞
−∞

dε1 dε2 f (43− ε1− ε2)(1− f (43− ε1))(1− f (43− ε2))

× 2(ε1)2(−ε2)

∫ ∞
−∞

dx1 dx2 δ(g±(x1)− ε2x
2
1 − ε1x

2
2)

= m|U(0)|2
π3h̄3a23

∫ ∞
−∞

dε1 dε2 f (43− ε1− ε2)(1− f (43− ε1))(1− f (43− ε2))

× 2(ε1)2(−ε2)√|ε1ε2|
∫ ∞
−∞

dx1

[
1

2
√
x2

1 − g+(x1)/ε2

+ 1

2
√
x2

1 − g−(x1)/ε2

]
.

(17)

Without the small correctiong±(x1)/ε2 in the square root, thex1-integral would diverge
logarithmically at zero and infinity. However, the linear term ing cuts off the divergence
at zero, whereas the cubic term cuts off the divergence at infinity, so

1

τe(k)
= 2m|U(0)|2

π3h̄3a23

∫ ∞
−∞

dε1 dε2 f (43− ε1− ε2)(1− f (43− ε1))(1− f (43− ε2))

× 2(ε1)2(−ε2)√|ε1ε2|
ln

∣∣∣∣ ε2

εk − εF

∣∣∣∣ (18)
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where we have neglected factors of order unity within the logarithm. The remaining energy
integrals may be scaled with respect tokBT and the resulting dimensionless integrals solved
numerically, thus leading to the final result

1

τe(k)
= 2.14m|U(0)|2kBT

π3h̄3a23
ln

∣∣∣∣ kBT

εk − εF

∣∣∣∣. (19)

To end this section, we shall discuss briefly what happens when the condition
|εF − 43| � 1 is relaxed and only equation (12) is valid. Gopalanet al [14] have studied
this case numerically, and their results seem to indicate thatτ−1

e (k) ∝ 1ζ where 1< ζ < 2.
In the limit where|εF − 43| � 1, which we have just studied,ζ → 1. In the opposite
limit, |εF − 43| � 1, the scattered electron does not feel the effect of the saddle point, so
ζ → 2, just as in the usual 2D case. In between these two limits, the value of the exponent
ζ was observed to change smoothly between 1 and 2.

5. Discussion and summary

In sections 3 and 4 we have presented a detailed analysis ofτ−1
e (k), the scattering rate for an

electron in state|k〉. The purpose of this analysis is to determine the analytic behaviour of
the scattering rate for different regimes of our model, rather then to derive exact numerical
results. The main assumption made was that1 � εF , where1 ≡ max(|εk − εF |, kBT ).
This assumption allowed us to identify specific scattering processes which make the
dominant contribution to the scattering rate, and also to calculate this contribution. We
note that the method developed here is quite general in nature and can be applied to any
2DES with an arbitrary energy spectrum.

In many experiments one is often interested in the scattering rate averaged over the
Fermi surface, and not the scattering rate for a specific wave vectork. In a 2DES with
an isotropic energy spectrum, these two quantities are identical, whereas in our model,
which has a strongly anisotropic energy spectrum (equation (2)), there can be a marked
k-dependence of the scattering rate. The exact nature of the averaging depends on the type
of experiment being performed, but generally has the form

1

τe−e(T )
=
(∫

dk τ−1
e−e(k)W(εk)

)/(∫
dk W(εk)

)
(20)

where the functionW(εk) determines the relative importance of the different states near
the Fermi surface. In a tunnelling experiment performed at finite temperature, one would
takeW(ε) = (df/dε)ε=εF so that states withinkBT of the Fermi surface take part in the
averaging. If the voltage bias,V , is large compared to the temperature, then the averaging
must be taken over all states with energyεF + eV , and henceW(ε) = δ(εF + eV − ε).
This type of averaging can also be relevant to interference experiments [17] and magnetic
focusing experiments [19] performed at low temperature. Due to the fact that the matrix
element of the screened Coulomb interaction is not calculated (see the discussion at the end
of section 1), we can only give order-of-magnitude estimates for the averaged scattering
rate, which will now be discussed.

The three different regimes of our model are characterized by the position of the Fermi
level relative to the top of the miniband. If the Fermi level is below the top of the miniband,
then only the three scattering processes of equations (6) make a dominant contribution to
the scattering rate, which is given by equation (9). This result is similar to that for the
uniform 2DES case, the main difference being the strongk-dependence of the scattering
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rate. The averaged scattering rate for this case is given by

1

τav(1)
≈ m|U(0)|212

h̄3a23εF
ln

[
εF

1

]
. (21)

When the Fermi level is near the top of the miniband, then the saddle point in the energy
spectrum has a strong effect on the scattering rate. Fork near the saddle point, and for
|εk − εF | � kBT , |εF − 43|, the scattering rate is given by equation (15). If, on the other
hand,kBT � |εk − εF |, |εF − 43|, the scattering rate is given by equation (19). Taken
together, these two equations mean that as long as1� |εF − 43| andk is near the saddle
point, thenτ−1

e (k) ∝ 1. If k is not near the saddle point but1 � |εF − 43| still holds
true, then Gopalanet al [14] have shown thatτ−1

e (k) ∝ 13/2. However, states far away
from the saddle point contribute much less to the logarithmically large density of states, so
the states near the saddle determine the averaged scattering rate, which is

1

τav(1)
≈ m|U(0)|21

h̄3a23
. (22)

Note that the logarithmic factor in equation (19) does not appear in the averaged scattering
rate, since forT > 0 one must average over all states withinkBT of the Fermi energy.

In the last regime, where the Fermi level is above the top of the miniband, we distinguish
between two cases. Ifk is not near a point on the Fermi surface with zero curvature, then
the behaviour of the scattering rate is similar to that of the first regime. However, due
to the non-trivial shape of the Fermi surface, other scattering processes, besides the three
described in equations (6), make a contribution to the scattering rate. This means that
equation (9), which includes only contributions from the three above-mentioned processes,
is only correct to within an order of magnitude, and the proper result should be two to three
times larger; ifk is near a zero-curvature point on the Fermi surface then the scattering
rate is markedly different from the usual 2D case, and is given by equation (11). While
the scattering rate near zero-curvature points is much larger then the scattering rate near
other points on the Fermi surface, these points do not have a direct qualitative effect on the
averaged scattering rate. The reason for this is that equation (11) is valid only for small
portions of the Fermi surface around the zero-curvature points. Since the length of these
portions is∝11/2 (equation (B9)), and since the scattering rate there is of the order of13/2,
the total contribution to the averaged scattering rate is only∝12, which is not larger than the
total contribution of other points on the Fermi surface. However, the zero-curvature points
do have an indirect effect on the averaged scattering rate in that equation (11) diverges as
1/x, wherex is the distance along the Fermi surface from the nearest saddle point. The
averaged scattering rate is thus

1

τav(1)
≈ m|U(0)|2
h̄3a23εF

ln2

[
εF

1

]
(23)

which is larger than the usual 2D result by an extra logarithmic factor.
As we noted in section 1, all of the results presented in this work refer to a single-

miniband model of a 1DSSL. Since a typical sample will have more than one occupied
miniband, we now discuss briefly the possible effect of the multiplicity of minibands on
the scattering rate. For an electron in a given miniband, the presence of other minibands
means that inter-miniband scattering may take place as well as intra-miniband scattering.
This in turn means that the total scattering rate is enhanced compared to the intra-miniband
scattering rate. However, we argue that this enhancement is only of the order of the number
of occupied minibands, and is not qualitative in nature. The reason for this is that the
presence of other minibands only means that the Fermi surface has other disconnected
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sections, besides the section belonging to the given miniband. Following the analysis
in section 3, it should be clear that these additional sections of the Fermi surface give
rise to additional dominant scattering processes, whose contribution to the scattering rate
is similar to the contribution of the scattering processes described by equations (6). A
possible exception to this argument arises when the Fermi level is such that it lies near the
top of one of the minibands. In that case the rate of scattering of an electron in our given
miniband will be dominated by processes involving the saddle point of the other miniband.
The scattering rate in this case will be similar to the intra-miniband scattering rate for an
electron lying in the same miniband as the saddle point, but far away from it, i.e.∝13/2.

In conclusion, we have studied theoretically the scattering rate due to e–e scattering
in a 1DSSL. On the basis of our results for a single-miniband model, we conclude that
the scattering rate exhibits various types of functional dependence on the temperature and
the energy of the scattered electron. In the introduction, we discussed possible experiments
which are affected by e–e scattering, and in which the full range of this behaviour should be
observable by controlling the position of the Fermi level. We hope that the results presented
in this work will motivate further theoretical and experimental research into this subject.
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Appendix A. Identification of dominant scattering processes

In this appendix we derive the necessary conditions for a scattering process to make a
dominant contribution to the scattering rate. The exact contribution of each of these
processes, and whether they are in fact dominant, is studied in sections 3 and 4.

From the discussion at the beginning of section 3, it is clear that to identify the dominant
scattering processes, one must identify the regions of the 4Dk1–k2 space which make
divergent contributions to the functionI (k, ε1, ε2) (defined in equation (4)) in the limit
1 → 0. To do this, let us imagine a scattering process in which the vectorsk1 and k2

are close to vectorsk0
1 andk0

2 respectively, and expand the integrand in equation (4) in the
small variablesri = ki − k0

i , thus obtaining

I (k, ε1, ε2) =
∫

dr1 dr2 |U(k − k0
1 − r1)|2δ(ω1− v1r1)δ(ω2− v2r2)

× δ(ε − v(r1+ r2)). (A1)

In the above integralvq ≡ ∂εq/∂q is the velocity at the pointq, and we have defined the
following quantities:

ωi ≡ εi − εk0
i

(i = 1, 2)

vi ≡ vk0
i

(i = 1, 2)

ε ≡ ε1+ ε2− εk − εk0
1+k0

2−k
v ≡ vk0

1+k0
2−k.

Since we are assuming that the matrix elementU(q) depends smoothly onq, we will neglect
its presence in the integral except as an upper cut-off forr1 andr2.
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Defining the coordinate system of each vectorri such thatviy = 0, we obtain

I (k, ε1, ε2) = |U |2δ
(
ε − v · v1x1+ |v × v1|y1

|v1| − v · v2x2+ |v × v2|y2

|v2|
)

= |U |2
∫

dy1 dy2

|v1||v2| δ
(
ε − v · v1ω1

|v1|2 − v · v2ω2

|v2|2 − |v × v1|y1

|v1| − |v × v2|y2

|v2|
)
.

(A2)

The main feature of the above result is that the following conditions must be fulfilled for it
to be well defined and finite:

(1) |v1| 6= 0;
(2) |v2| 6= 0;
(3) one of the prefactors ofy1 andy2 in the δ-function must be non-zero.

The last of these conditions means thatv 6= 0 and that all of the vectorsv, v1, andv2

cannot be parallel.
We are now in a position to define a set of conditions such that for a scattering process

to be dominant, one of them must be met. These conditions are given in equations (5) in
the body of the paper, where we also discuss whether these conditions are in fact sufficient
for a scattering process to be dominant, and the contribution of each process.

Appendix B. The contribution of a single scattering process to the scattering rate

In this appendix we calculate the contribution of the scattering process given by
equation (6a) to the functionI (k, ε1, ε2) defined by equation (4). This contribution will be
denoted asI s(k, ε1, ε2). The calculations for each of the two scattering processes described
by equations (6b) and (6c) are identical, except for the different matrix elements which
appear in the backward-scattering process. Also, at the end of this appendix we briefly
discuss the contribution of other dominant scattering processes, besides those given by
equations (6).

We start by making the change of variableskixa = qix and h̄kiy/
√

4m3 = qiy , where
i = 1, 2. Then, using the energy spectrum given by equation (2), we obtain

I a(k, ε1, ε2) = 4m3

h̄2a2

∫
dq1 dq2 |U(k − k1)|2

× δ[ε1− 23(q2
1y + 1− cosq1x)]δ[ε2− 23(q2

2y + 1− cosq2x)]

× δ[23(q2
1y + 1− cosq1x)+ 23(q2

2y + 1− cosq2x)

− 23(q2
y + 1− cosqx)− 23((q1y + q2y − qy)2

+ 1− cos(q1x + q2x − qx))
]

(B1)

whereq is defined with respect tok in the same manner as above. Next, since we are
interested in the contribution from the scattering process given by equation (6a), we define
xi ≡ qix − qx , yi ≡ qiy − qy , and expand in the small variablesxi andyi , which gives the
result

I a(k, ε1, ε2) = m|U(0)|2
2h̄2a232

∫ π

−π
dx1 dx2

∫ ∞
−∞

dy1 dy2 δ(ω1− 2qyy1− x1 sinqx)

× δ(ω2− 2qyy2− x2 sinqx)

× δ
(
−2y1y2− x1x2 cosqx + sinqx

2
x1x2(x1+ x2)

)
. (B2)
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Hereωi ≡ (εi − εk)/23, and we have kept only leading-order terms inxi andyi (except
for the cubic term in the lastδ-function, which, as we shall see, can be important). After
performing they1- andy2-integrals, we obtain

I a(k, ε1, ε2) = m|U(0)|2
2h̄2a232

∫ π

−π
dx1 dx2 δ[2ω1ω2− 2ω2x1 sinqx − 2ω1x2 sinqx

+ (2 sin2 qx + 4q2
y cosqy)x1x2− 2q2

yx1x2(x1+ x2) sinqx ]. (B3)

At this point it is necessary to differentiate between two very different cases, which
depend on the value of

κ(q) = sin2 qx + 2q2
y cosqy

the prefactor of the quadratic term in theδ-function in equation (B3). It is easy to see
that this factor is proportional to the curvature of the energy surface at the pointk, and
that if the curvature is zero, then this factor can also be zero. If the prefactor is not small
(exact criteria will be given shortly), then the cubic term in theδ-function may be neglected,
whereas in the opposite case the cubic term becomes important and the behaviour of the
integral is qualitatively changed.

Case 1:κ(q) is not small. In this case we may neglect the cubic term in theδ-function
in equation (B3), and after the appropriate scaling of the variablesx1 andx2, we obtain

I a(k, ε1, ε2) = m|U(0)|2
4h̄2a232|κ(q)|

∫ β1

−β1

dx1

∫ β2

−β2

dx2 δ[κ(q)− x1 sinqx − x2 sinqx + x1x2]

(B4)

whereβi ≡ |πκ(q)/ωi |. The remaining integrations are simple to perform, and yield

I a(k, ε1, ε2) = m|U(0)|2
4h̄2a232|κ(q)|

[
ln|β1+ sinqx | + ln|β1− sinqx | + ln|β2+ sinqx |

+ ln|β2− sinqx | − 2ln|κ(q)− sin2 qx |
]
. (B5)

If we now use the basic assumption thatω1 andω2 are small parameters, which means that
β1 andβ2 are much bigger than unity, the above expression simplifies to

I a(k, ε1, ε2) = m|U(0)|2
2h̄2a232|κ(q)|

[
ln|β1| + ln|β2|

]
(B6)

This result is given in terms of the original variables in equation (7) of section 3.
Case 2:κ(q) is small. In this case we may neglect the quadratic term compared to the

cubic term in theδ-function in equation (B3). Of the remaining four terms in theδ-function,
it is clear that the cubic term is always dominant as long asxi >

√
ωi , which means that

the integral diverges as 1/x. When xi ≈ √ωi , then the linear terms in theδ-function
become important and the divergence is cut off. This means that the main contribution to
the integral comes from the region wherexi ≈ √ωi , and therefore that the free term in the
δ-function is negligible and the boundaries of integration may be taken to infinity. Using
these arguments and scaling the integration variables appropriately, we obtain

I a(k, ε1, ε2) = m|U(0)|2
4h̄2a232|qy sinqx |

∫ ∞
−∞

dx1 dx2 δ[x1− x2− x1x2(ω2x1+ ω1x2)]. (B7)

This double integral can be simplified by going over to polar coordinates, which gives us

I a(k, ε1, ε2) = m|U(0)|2
8h̄2a232|qy sinqx |

∫ 2π

0
dθ

2(−(sinθ + cosθ)(ω2 sinθ + ω1 cosθ))√−(sinθ + cosθ)(ω2 sinθ + ω1 cosθ)

(B8)
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where2(x) is the Heaviside step function. The angular integral can be simplified and the
final result is given terms of the original variables by equation (10) in the body of the paper.

We are now in a position to determine the crossover between the above two cases.
Referring to equation (B3), and to the discussion in the previous paragraph, it is clear that
the crossover occurs when

(sin2 qx + 2q2
y cosqx)x1x2 ≈ q2

y (x1+ x2)x1x2 sinqx and xi ≈ √ωi.
Going back to the original variables, we obtain for the criteria of the crossover region

α(k) ≈ εF
√
1/3 (B9)

whereα(k) is defined in equation (8).
Finally, we wish to briefly discuss the contribution of other dominant scattering

processes, besides those described by equations (6), to the integralI (k, ε1, ε2). To do
this we use the notation of appendix A and examine a scattering process whereki is near
some arbitraryk0

i (i = 1, 2). Since the scattering process is dominant, and we are assuming
that the Fermi level is far from a saddle point, then condition (5b) must hold true. This
means that by proceeding in a similar manner to that described by equations (B1)–(B3),
one arrives at the result

I (k, ε1, ε2) = m|U(0)|2
2h̄2a232

∫ π

−π
dx1 dx2 δ

[
aε + bεx1+ cεx2+ dx2

1 + ex2
2 + f x1x2

+ (third-order terms)
]
. (B10)

Hereε ≡ 1/3 anda, b, c, d, e, andf are all dimensionless parameters that depend onk,
k0

1, andk0
2, and are generally of the order ofεF /3. The result is arrived at by employing

condition (5b) so that all linear terms in theδ-function that are not proportional toε vanish.
It can be seen from equation (B10) that

I (k, ε1, ε2) ≈ m|U(0)|2
2h̄2a23εF

ln

[
εF

1

]
(B11)

and hence that the contribution of the scattering process toI (k, ε1, ε2) is of the same order
as the contribution of the scattering processes given by equations (6). Note that the case in
which k is near a zero-curvature point is not relevant to the current discussion, since then
only the scattering processes given by equations (6) can be dominant (figure 1(b)).
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